X-InstructBLIP
- Paper: X-InstructBLIP: A Framework for aligning X-Modal instruction-aware representations to LLMs and Emergent Cross-modal Reasoning
- GitHub Link
- Publisher:
Arxiv
- Author Affiliation:
University of Pennsylvania
- Functional Division
- Understanding
- Generation
- Design Division
- Tool-using
- End-to-end
- Input Modalities $\rightarrow$ Output Modalities
(I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)- I+A+V+3D+T $\rightarrow$ T
- Model Architecture
(Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)- Modality Encoder
I/V: Eva-CLIP ViT-G/14
A: BEATs
3D: ULIP-2
- Input Projector
Q-Former w/ Linear Projector
- LLM Backbone
Vicuna-v1.1-7B/13B
- Output Projector
None
- Modality Generator
None
- Modality Encoder
- Datasets Scale
- Pre-training Stage
Not report
- Instruction-tuning Stage
Not report
- Pre-training Stage
This post is licensed under CC BY 4.0 by the author.