Post

VILA

  • Paper: VILA: On Pre-training for Visual Language Models
  • GitHub Link: None
  • Publisher: Arxiv
  • Author Affiliation: NVIDIA
  • Functional Division
    • Understanding
    • Generation
  • Design Division
    • Tool-using
    • End-to-end
  • Input Modalities $\rightarrow$ Output Modalities
    (I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)
    • I+T $\rightarrow$ T
  • Model Architecture
    (Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)
    • Modality Encoder
      • I: ViT@336
    • Input Projector
      • Linear Projector
    • LLM Backbone
      • LLaMA-2-7B/13B
    • Output Projector
      • None
    • Modality Generator
      • None
  • Datasets Scale
    • Pre-training Stage
      • 50M
    • Instruction-tuning Stage
      • 1M
This post is licensed under CC BY 4.0 by the author.