Post

Qwen-VL

  • Paper: Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond
  • GitHub Link
  • Publisher: Arxiv
  • Author Affiliation: Alibaba Group
  • Functional Division
    • Understanding
    • Generation
  • Design Division
    • Tool-using
    • End-to-end
  • Input Modalities $\rightarrow$ Output Modalities
    (I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)
    • I+T $\rightarrow$ T
  • Model Architecture
    (Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)
    • Modality Encoder
      • I: ViT@448 initialized from OpenClip’s ViT-bigG
    • Input Projector
      • Cross-attention
    • LLM Backbone
      • Qwen-7B
    • Output Projector
      • None
    • Modality Generator
      • None
  • Datasets Scale
    • Pre-training Stage
      • 1.4B
    • Instruction-tuning Stage
      • 50M
This post is licensed under CC BY 4.0 by the author.