GILL
- Paper: Generating Images with Multimodal Language Models
- GitHub Link
- Publisher:
NeurIPS 2023
- Author Affiliation:
Carnegie Mellon University
- Functional Division
- Understanding
- Generation
- Design Division
- Tool-using
- End-to-end
- Input Modalities $\rightarrow$ Output Modalities
(I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)- I+T $\rightarrow$ I+T
- Model Architecture
(Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)- Modality Encoder
I: CLIP ViT-L
- Input Projector
Linear Projector
- LLM Backbone
OPT-6.7B
- Output Projector
Tiny Transformer
- Modality Generator
I: Stable Diffusion-1.5
- Modality Encoder
- Datasets Scale
- Pre-training Stage
Not report
- Instruction-tuning Stage
Not report
- Pre-training Stage
This post is licensed under CC BY 4.0 by the author.