DLP
- Paper: Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
- GitHub Link
- Publisher:
NeurIPS 2022
- Author Affiliation:
Dartmouth College
- Functional Division
- Understanding
- Generation
- Design Division
- Tool-using
- End-to-end
- Input Modalities $\rightarrow$ Output Modalities
(I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)- I+T $\rightarrow$ T
- Model Architecture
(Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)- Modality Encoder
I: CLIP/Eva-CLIP ViT
- Input Projector
Q-Former+P-Former w/ Linear Projector
- LLM Backbone
OPT/Flan-T5
- Output Projector
None
- Modality Generator
None
- Modality Encoder
- Datasets Scale
- Pre-training Stage
Not report
- Instruction-tuning Stage
Not report
- Pre-training Stage
This post is licensed under CC BY 4.0 by the author.