Post

AnyMAL

  • Paper: AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model
  • GitHub Link: None
  • Author Affiliation: FAIR, Meta & Meta Reality Labs
  • Functional Division
    • Understanding
    • Generation
  • Design Division
    • Tool-using
    • End-to-end
  • Input Modalities $\rightarrow$ Output Modalities
    (I: Image, V: Video, A: Audio, 3D: Point Cloud, T: Text, ID: Document understanding, IB: Output bounding box, IM: Output segmentation mask, IR: Output retrieved images)
    • I+V+A+T $\rightarrow$ T
  • Model Architecture
    (Input $\rightarrow$ Modality Encoder $\rightarrow$ Input Projector $\rightarrow$ LLM Backbone $\rightarrow$ Output Projector $\rightarrow$ Modality Generator $\rightarrow$ Output)
    • Modality Encoder
      • I: CLIP ViT/L & ViT-G & DinoV2
      • V: Intervideo
      • A: CLAP
    • Input Projector
      • I/V: Cross-attention
      • A: Linear Projector
    • LLM Backbone
      • LLaMA-2
    • Output Projector
      • None
    • Modality Generator
      • None
  • Datasets Scale
    • Pre-training Stage
      • Not report
    • Instruction-tuning Stage
      • Not report
This post is licensed under CC BY 4.0 by the author.